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Surface Correlations in a Quantum 
Mechanical One-Component Plasma 
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The time-dependent pair correlation function of a quantum mechanical one- 
component plasma bounded by a plane hard wall is studied near that wall. 
Along the wall, this function has an algebraic asymptotic form: it decays only as 
the inverse cube (square) of the distance for a three (two)-dimensional system 
(the case of fermions at zero temperature is excluded from the present study). 
The amplitude of the asymptotic form obeys a universal sum rule. Similar 
results hold at the plane interface between two different one-component 
plasmas. 
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1. I N T R O D U C T I O N  

The static correlations between charged particles in classical Coulomb 
fluids have recently attracted renewed theoretical attention, (l-s) especially 
as far as surface properties are concerned. For classical Coulomb fluids 
confined in a half-space by a plane hard wall, it is now clear that the static 
charge correlations near the wall decay in general only as a power law in 
directions parallel to the wall; this is in contrast with the decay faster than 
any power law which occurs in the bulk fluid at least in all cases for which 
the answer is known. A variety of sum rules obeyed by the correlation 
functions have been derived both for bulk and semi-infinite fluids. 

An extension of some of the above results to time-dependent and 
quantum effects in a one-component plasma (jellium) is feasible. In the 
bulk, the classical Stillinger-Lovett sum rules, (6) which give the zeroth and 
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second moment of the static pair correlation function, or equivalently the 
long-wavelength behavior of the structure factor, (v) have a time-dependent 
and quantum mechanical counterpart. (8'9) The present paper deals with the 
pair correlation function of a semi-infinite one-component plasma, for 
which the previously obtained classical results (3) will be extended to time- 
dependent and quantum mechanical phenomena. It will be shown that 
(except perhaps in the case of fermions at zero temperature) near the wall 
which confines the semi-infinite plasma, in directions parallel to that wall, 
the two-body correlation function still decays in general as a power law, 
i.e., as the inverse cube (square) of the distance, for a three (two)-dimen- 
sional system, that the amplitude of this asymptotic form oscillates in time 
with two characteristic frequencies, and that it obeys a sum rule. 

Most of the static classical results are valid for plasmas with an 
arbitrary number of components. In dealing with time-dependent and 
quantum mechanical effects, only the one-component plasma will be con- 
sidered. This is because the dynamical properties (which are not indepen- 
dent of the static properties for a quantum system) have a special feature 
for the one-component plasma: there is no viscous damping of the long- 
wavelength plasma oscillations; it will be seen that this absence of damping 
is an essential ingredient of the argument. 

Our results are stated in Section 2. In the classical case, the asymptotic 
form of the static charge correlation function along a wall had been 
studied 13) by a linear response argument; this argument will be generalized 
to the present case in Section 3. An alternative and perhaps physically 
more transparent argument in terms of long-wavelength collective modes 
will be presented in Section 4. Another, related, problem, the form of the 
correlations at the interface between two one-component plasmas, will be 
treated in Section 5. 

2. R E S U L T S  

We consider a three-dimensional one-component plasma (it will be 
straightforward to adapt the results to the two-dimensional case; see the 
end of this section). This is a system of particles of charge e, mass m, and 
bulk number density n, embedded in a neutralizing uniform background of 
charge density - e n ;  furthermore, the background is assumed to have a 
dielectric constant e. Thus the interaction potential between two particles at 
a distance r from each other is eZ/~r. The system is a semi-infinite one, con- 
fined to the half-space x > 0; we call y the coordinates normal to x. We 
assume the half-space x < 0 to be filled with a material described by a 
dielectric constant e w. In addition, the plane x = 0 may carry some fixed 
uniform surface charge density. 
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The system is in equilibrium; the inverse temperature is ft. Let the 
microscopic charge density at the point (x, y) be 

C(x, y) = e ~ 6(x - xi) c5(y - Yt) - en (2.1) 
i 

where (x;, Yi) are the coordinates of particle i. The canonical average 
charge density is 

c~l~(x, y ) =  (C(x, y ) )  (2.2) 

although c/*) (x, y) vanishes far away from the wall, it may differ from zero 
near the wall. We also introduce a time-dependent microscopic charge den- 
sity by the Heisenberg operator 

C(x, y; t) = exp(iHt/h) C(x, y) e x p ( - i H t / h )  (2.3) 

where H is the Hamiltonian and h is Planck's constant divided by 2r~. The 
time-dependent charge correlation function is defined by 

c~(x,x ' ,  [y ' -y l ; t )=(C(x ,y ; t )C(x ' , y ' ;O)) -c(*) (x ,y )c( l ) (x ' , y ' )  (2.4) 

its time Fourier transform is 

c~)(x,x ', l y ' - y J ; c o ) = - -  dtexp(imt) c~(x,x ' ,  l y ' - y l ; t )  (2.5) 
oo 

In the following, it will be argued that (except perhaps for fermions at 
temperature) near the wall c~(x ,x ' ,  l y ' - y l ; c o )  has an algebraic 

values of x and x'. More 
zero 
decay when f y ' - y [  becomes large for fixed 
precisely, 

a(x, x'; o~) 
c~)(x,x',fy'--y];co) ,-~ {y,_yl3 , when l y ' -  y[ --* oo (2.6) 

where a(x, x'; co) is a function which has a fast decay as x or x' increases 
and which obeys the sum rule 

f f  fo ~ '.co) dx' dx a(x, x ,  

{ I a(co--coJ 6(co+co,) ] 
_ 1 - + hcos 1  Ys (4z) 2 - exp(-flhco~) 1 

-Txxp ---No,) 1 (2.7) 
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where ~op and co~ are the bulk and surface plasma frequencies: 

{47cne2"~ 1/2 F 4tone2 
, (2.8) 

By integration upon co, one gets the static result 

c(r2)(x, x', lY'-Yl; t = 0),- - -  
f(x, x') 
ly ' -y l  3' when l y ' -  Yl --* oe (2.9) 

where 

dx' dx f(x, x') 

- ~ [ -(5 +5 w) hoosctnh(~hoos/2) + 5h~opctnh(~hegp/2)] 
t,+~ ) L 

(2.10) 

In the classical limit h ~ 0, one finds 

fo ~ 1 dx' dx a(x, x'; co) = (4~) 2 fl - -  { - ( e  + 5w)E6(co- ~s) + 6(~ + ~s)-I 

+ e [ 6 ( ~  - ~ , )  + 6(,:0 + %0)] } (2.11) 

and one recovers (3) 

fo ~ fo '~ 2~w (2.12) dx' dxf(x,  x') = (4~:)2 

For a two-dimensional one-component plasma, with an interaction 
potential - (e2/e)In  r, one finds similar results; however, lY'-Y[-3 has to 
be replaced by [y, y[-2 in (2.6) and (2.9), the plasma frequencies (2.8) 
have a factor 2rt instead of 4n, and (4re) -2 must be replaced by (27r) -2 in 
(2.7), (2.10), (2.11), and (2.12). 

3. L INEAR R E S P O N S E  D E R I V A T I O N  

We derive the results in Section 2 by a time-dependent and quantum 
mechanical generalization of the static classical linear response argument of 
Ref. 3. 

We introduce on the wall x = 0 an external surface charge density 2 of 

2 As usual, the actual physical quantity is the real part of the complex expression. 
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the form ct exp(iq �9 y - icot), where q is a two-dimensional vector parallel to 
the wall; this charge creates an electrostatic potential 

47~ 
~b(x, y; t) = exp(iq - y - q ]xi - icot) (3.1) 

( e + e w ) q  

and therefore is coupled to the microscopic charge density (2.1) by the 
coupling Hamiltonian c~ V exp( - icot) with 

4~ f dY'Io ~ dx' exp(iq.y'-qx')C(x',y') (3.2) V =  (~+ew)  q 

We look at the linear response of the operator 

A(y) = C(x, y) dx (3.3) 

assuming that co has a small positive imaginary part which ensures that the 
coupling is introduced adiabatically. To first order in ~, the presence of the 
coupling Hamiltonian changes the average value 3 of A(y) at time t by an 
amount 

6A(y; t) = c~z(q; co) exp(iq - y - icot) (3.4) 

The response function z(q; co) is related by the fluctuation-dissipation 
theorem (~~ to the correlation between A and V computed for the non- 
coupled system (c~ = 0): 

1 
f ~  d t e x p ( - i q . y + i c o t ) [ ( A ( y ; t )  V )  ( A ( y ) ) ( V ) ]  

2re ~o 

h 1 
= rc 1 - e x p ( - f l h c o )  Im )~(q; ~o) (3.5) 

We now use (3.5) in the long-wavelength limit q ~ 0 where we know 
)~(q; co). In this limit, indeed, the response is given by macroscopic con- 
siderations. The external surface charge density induces in the plasma a 
charge density localized near the surface, and, in the macroscopic limit 
q---, 0, cSA(y; t) can be viewed as an induced surface charge density; thus the 
total surface charge density is (1 + •) c~ exp(iq, y -  icot). Correspondingly, 
the total potential is 

4~c~ 
~bto~ = (1 +Z)  exp(iq - y - q lxl - icot) (3.6) 

( e + e w )  q 

3 If the wall also carries a fixed uniform surface charge density - a o ,  it is screened by A(y). 
When ~=0,  (A(y) )=~o .  
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The current density induced by that potential is 

n e  2 

j = --i V~btot (3.7) 
m c o  

On the wall x = 0, j~ and 6A are related by the charge conservation 
equation 

ico 6A =Jx Ix=O (3.8) 

Combining these equations, we obtain 

2 

cos (3.9) 
Z = co2_ co2 

where cos is defined by (2.8); co~ is indeed the resonance frequency of surface 
waves, the surface plasmons. 

Since co has a small positive imaginary part, 

rccos [6(co - cos) - 6(co + COs)] (3.10) Im )~- 2 

Using (3.10) in (3.5), we find 

dy' exp(iq" (y' - y)]  dx'exp(-qx')  dxc~)(x,x', l y ' -  yl; co) 

+ ~ w [ 6(co- c~) 6(co + cos) 
~-~ hc~ Ll--exp(--f lhco,)  l ~ s ) J  q' whenq--*O 

(3.11) 

Equation (3.11) is a sum rule which might be of some interest by itself. 
However, it is also possible to transform it into another form which no 
longer contains the factor exp ( -qx ' ) .  For this purpose, we use the known 
long-wavelength form of the bulk structure factor, (s) which can be written 
a s  

f lim dy' exp[iq �9 ( y ' -  Y)] dx c~)(x, x', tY ' -  Y[; co) 
x '  ---~ ao  

e [ 6(co- %) 6(co + c%) -1 
8--~ hcop 1 -exp(--/~hco,)  1 - -~ -~xp(~ , j J  q2, when q ~ 0 

(3.12) 
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where  (.Op is the bulk plasma frequency defined by (2.8). Multiplying both 
sides of (3.12) by ~ e x p ( - q x ' )  dx'= 1/q and substracting it from (3.11), 
we obtain 

f dy'exp[iq.(y'-y)] f? dx'exp(-qx')[fo dxc(r2'(x,x ', [ y ' -  y[; (o) 

fo J -)!moo dxc~)(x,x', l y ' - y [ ;  co) 

~ m O , _ l _ e x p ( _ f i h % )  t - e x p ( f l h % ) ]  

8~ ~ 1 - e x p ( - f l h % )  1 - ~ x p ( ~ p i J J  q' w h e n q ~ 0  

(3.13) 

Finally, since the last square bracket in the left-hand side of (3.13) goes 
rapidly to zero as x' increases, in the small-q limit we can erase the factor 
exp ( -qx ' ) .  Thus, the left-hand side of (3.13) is just a two-dimensional 
Fourier transform with respect to y ' - y ,  and (3.13) states that it behaves 
like Iql for small q. Since the inverse Fourier transform ~ of [q[ is 
-1/2~ lY'-y[3,  if the left-hand side of (3.13) has no other singularity on 
the q real axis one obtains 

E;o f0 1 dx' dxc~)(x,x', ]Y'-Yl; ,~moo dxc(rZ)(x,x ', [ y ' - y ] ;  co) 

I {_(~+ew)hco, [ a(oo-co,) a(co+o~A ] 
(4~) 2 1 ---exxpi----fiffc%) 1 - exp(flhcos) j 

a( o-o,p) a(o+o,p) 1 
+ ghgop 1 -exp(-flhCOp)- 1 - - ~ x p ( ~ p ) O J  [yt - yl 3, 

when t Y ' -  Yl ~ oo (3.14) 

Assuming that no subtle cancellations occur when the asymptotic form of 
c~)(x, x', [y ' -Y[ ;  co) is integrated upon x and x', we infer from (3.14) that 
this asymptotic form is (2.6). Assuming also that the bulk term in the left- 
hand side of (3.14) has a faster decay, and does not contribute to the 
asymptotic form, we can rewrite (3.14) as the sum rule (2.7). 

It should be noted that (3.11) and (3.13) remain valid in the zero-tem- 
perature limit. Actually, by integrating (3.13) [with the factor exp(-qx') 
erased] upon ~o, one recovers at zero temperature an equation previously 
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derived by Langreth and Perdew. (13) However, at zero temperature, for fer- 
mions, one expects some singularity related to the existence of a sharp 
Fermi surface. For instance, one knows that the bulk static response 
function )~(q, 0) is singular at q = 2f (where f is the Fermi wave number); 
this singularity gives rise to the well-known Friedel oscillations./14) In our 
surface problem, we may also expect singularities for other values of q than 
q = 0, and therefore the asymptotic behavior of c~)(x, x', lY ' -y] ;  co) might 
be not as simple as (2.6). This is why we exclude the case of fermions at 
zero temperature. 

Finally, let us note that the simple form (3.9) for the response function 
in the limit q --, 0 is valid for a one-component plasma but not for a many- 
component one. For a many-component plasma, the different components 
will not oscillate in phase with one another, and the oscillation will be 
damped by the mutual friction of the different components. The resonance 
at co, (and the one at ~op for the bulk plasmons) will be both broadened 
and displaced in a nonuniversal way, and the simple equation (2.7) will no 
longer be valid. 

4. COLLECTIVE M O D E  F L U C T U A T I O N S  

We now present an alternative argument, which is essentially 
equivalent to the previous one, but instead of using the linear response 
approach, we directly look at the fluctuations of the collective modes. The 
behavior of the correlations is governed by the long-wavelength collective 
modes, which can be studied maeroscopically. The correlations near the 
wall will be ascribed to those modes which involve the surface density. 
Indeed, from a macroscopic point of view, the total charge at time t can be 
separated into a volume charge density p(x, y; t) and a surface charge den- 
sity o-(y; t); the microscopic charge density (2.1) can be replaced by an 
expression of the form p(x, y; t) + 6(x) a(y; t), which can in turn be expan- 
ded as a superposition of collective modes. These modes are of two dif- 
ferent types: surface plasmons and volume plasmons. We shall first describe 
them classically, and quantize then afterwards. 

4.1. Sur face Plasmons 

A surface plasmon is defined as a mode for which the volume charge 
density p vanishes. There is only a surface charge density, which we choose 
of the form 

a(y; t) = O-q( t )  exp(iq �9 y) + a_  q(t) exp( - iq" y) (4.1) 
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Reality requires a q = a*. This surface charge density creates a potential 

47~ 
~b(x, y; t ) =  ~r(y; t) e x p ( - q  ]x]) (4.2) 

(~+ew)q 

which induces a current density j(x, y; t) obeying 

c•j e 2n 
- V~b ( 4 . 3 )  

at m 

charge conservation on the plane x = 0 requires 

OG 
0--7 + jx(0, y; t) = 0 (4.4) 

Combining these equations, we easily find that the motion of ~rq(t) is 
described by a harmonic oscillator Hamiltonian 

] Hq= A (e + ew) q ~ laqJ2 + I~q12 (4.5) 

where A is the area of the wall, and the frequency CO, is given by (2.8). 

4.2. Vo lume Plasmons in a Hal f -Space 

We now consider the volume plasmons, which are the modes for 
which the volume charge density p does not vanish. Combining Poisson's 
equation 

A~b = -(4~/e) p (4.6) 

with current conservation 

~p 
~---~ + div j = 0 (4.7) 

and the mechanical equation (4.3), we find that p obeys an harmonic 
oscillator equation with the bulk plasma frequency COp given by (2.8). For 
the present half-space problem, there is an important additional feature: a 
surface charge density ~ must appear on the wall x = 0, in order that (4.4) 
be satisfied. From (4.3) and (4.4), which are also valid for the present 
mode, we find 

~ ~=o+ 
- e ~ x  =4nor (4.8) 
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Since -zOq)/~x has to jump by 4rc~r across the plane x =  0, it vanishes for 
x = 0 - ,  and we can choose ~b = 0 for x < 0. 

Thus we look for a volume charge density of the form 

p(x, y; t ) =  [pqk(t) exp(iq'y)+p_,k(t)exp(--iq'y)] sinkx (4.9) 

(where p_qk = P'k) to which is associated a potential 

4~z 
~b = e(q~ + k2 ) p (4.10) 

obeying (4.6) and a surface charge density 

k 
~r(y; t )=  q2+k 2 [p~k(t)exp(iq.y)+p_qk(t)exp(--iq.y)] (4.11) 

obeying (4.8). All these quantities oscillate at the frequency COp, and their 
motion is found to be decribed by the harmonic oscillator Hamiltonian 

gq~=AL (q2+k2) I~qklZ+[pqkl 2 (4.12) 

where A is again the area of the wall and L the length of the system in the 
x direction. 

4.3. Thermal Averages 

It is easy to show that the surface and volume waves are independent 
from one another for different values of the wave vectors (except for the 
fact that a given wave involves both q and - q ) ,  i.e., that for a super- 
position of waves the total Hamiltonian is just a sum of terms of the forms 
(4.5) and (4.12). Each wave behaves like a two-dimensional independent 
harmonic oscillator (the oscillator is two-dimensional because aq and Pqk 
are complex quantities, the real and imaginary parts of which are indepen- 
dent variables). These collective variables can be approximately considered 
as canonical "position" variables. 17/Quantizing them, we find the nonzero 
thermal averages to be 

1 I exp (-icGt) exp(kost) 
(~+~w)qh~ 1 - e x p ( - f l h c G )  1 - ~ s ) J  (a,(t) a*(O)) - A 8~ 

(4.13) 

and 
1 ~(q2 + k 2) 

(p,z(t) p*k(O) ) = AL 4~z 
L ~1 exp(-iOOpt) exp(icopt) ] hfO p S ~-xp(~p) 1-exp(flhcop)3 

(4.14) 
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4.4. Charge Correlations 

An arbitrary charge fluctuation can be expanded on the basis of the 
surface a and volume modes: 

p(x, y; t) = y' Pqk(t) exp(iq �9 y) sin kx (4.15) 
qk 

(~a(q;t)?~Iaq(t)-~q2@Pqk(t)lexp(iq'y) (4.16) 

The sums upon q and k in (4.15) and (4.16) can be replaced in the 
usual way by A ~ dq/(2n) 2 and L y;o dk/n. Using the independence of the 
different modes, we find the correlation functions 

(p(x,y;t) p(x,y;O))=ALf dq ~dkexp[iq.(y_y,) ] 
(--~)~o~ 

x sin kx sin kx'(pqk(t) p*k(O)) (4.17) 

(, dq 
(p(x, y; t) 5a(y';O)) = -AL J (2n) 2 Jo n expEiq . (y -y ' ) ]  

k 
x sin kx~- -~  (p,k(t) p'k(0)) (4.18) 

(~a(y; t) 6a(y'i O) )= A f ~dq exp[iq. ( y - y ' ) ]  { ( % ( t ) a * ( 0 ) )  

fo } + L  k2)2 (pqk(t) p*k(O)) (4.19) n (q2 + 

where (pqk(t) p'k(0)) and (aq(t) a*(0))  are given by (4.14) and (4.13) for 
small values of q and k (what happens for larger values of q and k cannot 
be inferred from the present macroscopic analysis, but we expect that we 
can account for it by assuming that these correlation functions as functions 
of q and k decay fast enough for making the integrals convergent at 
infinity, or equivalently that we can introduce some upper cutoffs in q and 
k at some inverse microscopic length). Thus, the correlation functions 
(4.17), (4.18), (4.19) appear as Fourier transforms and their behavior at 

4 W e  use the n o t a t i o n  6 a  r a t h e r  t h a n  G for  the  su r face  c h a r g e  density fluctuation for  e m p h a s i z -  

ing t ha t  a = 6 a  + ao has  a s ta t ic  p a r t  ao  if  the  wall  ca r r ies  a s ta t ic  ex te rna l  c h a r g e  - a o. 
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large separations is governed by the behavior at the origin in wave-number 
space (we exclude the case of fermions at zero temperature). 

In the volume correlations (4.17) and the volume-surface 
correlations (4.18), the integrands are regular at the origin, and these 
correlation functions will have a faster than algebraic decay as (x, y) 
recedes in any direction. Furthermore, one can check that (4.17) goes to 
the correct bulk form far away from the wall. Indeed, since 

sin kx sin kx' = �89 k(x' - x) - cos k(x' + x)]  (4.20) 

and since the contribution from cos k(x' + x) goes to zero as x' + x --* ~ (a 
general property of Fourier transforms), using the symmetries one is left 
with 

aq dk 
(p(x, y; t) p(x', y'; O ) ) ~ f  (2g)  3 

x exp[iq '  ( y - y ' ) +  ik (x-x ' )]  S((q2+ka)l/2; t) 2(4.21) 

where the bulk time-dependent structure factor 

S( (q  2 q- k2)1/2; t) = �89 p*k(O)) (4.22) 

has from (4.14) the known (8) small wave-number behavior equivalent to 
(3.12); in the static classical limit t = 0, h = 0, (4.22) takes the perhaps more 
familiar form 

S((q2 + k2)1/2) s 2 = 4 - ~  (q +k2)  (4.23) 

which is equivalent to the Stillinger-Lovett rules. (6) 
In the surface correlations (4.19), however, the integrand is singular at 

q = 0 .  On one hand, (%(t)a*(O)) behaves like [ql, from (4.13). On the 
other hand, the integral upon k also is singular like Iql: using (4.14) in 
(4.19), and introducing some upper cutoff K, one has to compute 

~: k 2 
fo dkq2 +k2=K--~q+O(q 2) (4.24) 

Altogether, (4.19) is of the form 

(6a(y;  t) 6a(y'; 0 ) )  = f ,ff~q,2 exp[iq" ( y - y ' ) ]  s(q; t)  
J ~ 

(4.25) 
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where, for small q, s(q; t) has a cusplike singularity 

{e+ew h f e x p ( -  imp.t) 

- exp( - fiho.~) 
exp(ic%t) . ] _ ~  I exp(-ic%t) 

1-exp(flhcos) j 8~ h~~ 

exp(icOpt) ]~ 
1 -~ ~ p ) J  J q 

The space and time Fourier transform of this gives the asymptotic behavior 
in space 

dt 
f ~ exp(i~t)( 6a(y; t) 6a(y'; 0))  

1 hc~ I 

+ ehcOpll 6(o)-o)p) 
1-exp(-flhoJ~) 1 - exp(flhco~)J 

1 --L--~x~-h-~pi_[ j IY'-y[3 

when Jy'-Yl -~ (4.26) 

Coming back now to the microscopic point of view, in which only 
volume charge densities are defined (the distribution a6(x) is actually 
smeared on some microscopic distance in the x direction), we can interpret 
(4.26) [and the fast decay of (4.17) and (4.18)] by assuming that the 
correlation function (2.5) has a algebraically decaying part, localized near 
the wall, of the form (2.6). The macroscopic expression (4.26) must be iden- 
tified with the integral upon x and x' of the microscopic expression (2.6), 
and therefore the sum rule (2.7) follows from (4.26). 

It should be emphasized that the volume plasmons do contribute to 
the surface charge density fluctuations, and this is the physical reason for 
which the bulk plasma frequency cop appears in (2.7). 

5. INTERFACE BETWEEN TWO ONE-COMPONENT PLASMAS 

The above results and derivations can be easily extended to the plane 
interface between two one-component plasmas. The interface is chosen as 
the plane x = 0. The region x < 0 (x > 0) is a one-component plasma made 
of particles of charge el (e2), mass m 1 (m2) , and bulk number density 
nL (n2), embedded in a neutralizing background of charge density 
-e~nl (-e2n2) and dielectric constant e~ (e2). The plane x = 0  must be 
assumed impermeable to the particles if they are different on each side; it 

822/39/3-~-12 
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may be permeable or impermeable if the particles are identical on both 
sides. 

In the bulk of each plasma, volume plasmons have the frequencies 
e)l=(4z~nle~/~lrnl) V2 and e)z=(4~nze~/e,2m2) V2, respectively. Along the 
interface, (u) there are surface plasmons with a frequency 

COs ~ \ ml m2 / J  

Instead of (3.11), one now finds the sum rule 

dy' exp[iq" (y' - y)] dx ' exp ( -q l x ' l )  dxc~) ( x , x ' , l y ' - y i ;m)  
- - o o  - - o o  

e18~z + e-------22 he), 1 - exp(-flhc%) i - exp(flhe),)_] q' when q -~ 0 (5.2) 

Again, one can get rid of the factor e x p ( - q  Ix'l) by combining (5.2) with 
bulk terms. Except perhaps for fermions at zere temperature, one finds 
again an algebraic asymptotic behavior of the form (2.6), where now, 
however, 

f ~o~ dx foo '" 03) dx' a(x, x ,  
- -  - - o o  

1{ [ (--~n)2 -(e~ + e2) he)s 1-exp(-/~he)~) 
6(~o + cox) ] 

a(e)-e),) 6(e)+e)~) ] 
-J- ~1h6~ 1-exp( - f lhe ) l )  1-exp(flhCOli 

I a(e)+e)2/ ]t 
+ e2he)2 1-exp(- f ihe)2)  1-exp(flhe)2)J j 

(5.3) 

Yet, in the classical limit h = 0, 

do~ dx dx' a(x, x ,  
c ~  - - o o  - - o o  

This is in agreement with the conjecture that, for classical systems, the 
static correlation function c ~ ( x , x ' ,  l y ' - y l ; t = 0 )  has a faster than 
algebraic decay in every direction near the interface of two conducting 
media. (<xs'*6) Apparently, at such an interface, the presence of conducting 
material everywhere makes the static screening of a given particle efficient 
enough for the screening cloud to have a fast decay; but the existence of 
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several different resonance frequencies near the interface makes the 
dynamical screening less efficient, causing an algebraic spatial decay (for a 
quantum system, even the static screening is spoilt, because the dynamics 
and the statics cannot be separated). 

CONCLUSION 

The charge correlations along a wall or an interface have a rather 
general asymptotic behavior as the inverse cube (square) of the distance for 
a three (two)-dimensional system. The basic mechanism is that the 
spherical symmetry, which exists around a point charge in the bulk, is 
broken near a wall or interface, and a dipole moment appears. The inverse 
cube (square) law is essentially a dipole-dipole interaction. (17) The univer- 
sal sum rule which has been obtained for large distances is a consequence 
of the validity of macroscopic electrostatics and hydrodynamics for large- 
scale phenomena in jellium. 
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